

Analysis on Battery Charging Behavior of Electric Vehicles

Toshiyuki Yamamoto, Xiao-Hui Sun and Takayuki Morikawa Nagoya University

Outline

Introduction

BMW i.

a service from BMN

Battery charging behavior
Within trip
At home

(

AKN-322

Conclusions

Battery electric vehicles and Plug-in hybrid vehicle in Japan

i-MiEVLeafPrius plug-in hybrid200920102012

More energy efficient, but more electricity dependent

Charging types

Level 1		Leve	2	Level 3		
120V (SAE J1772)	100V (Japan)	240V (SAE J1772)	200V (Japan)	>=480V (CHAdeMO technology)		
Normal cl requires s charge a fu be	several h	Fast charging (aka quick or rapid charging) provides an 80% charge in 30 minutes				

Fast charger deployment in Japan

Fast charger density

Charging stations are located: Workplaces & leisure places (47.3%) Parking lots (4.8%) Convenience stores (2.5%)

Car sales shops (40.4%) Motorways (2.8%) Gas stations (2.2%)

Battery charging within trip

 Sun, X.-H., Yamamoto, T. and Morikawa, T.: Stochastic frontier analysis of excess access to mid-trip battery electric vehicle fast charging. Transportation Research Part D, Vol. 34, pp. 83-94, 2015. DOI:10.1016/j.trd.2014.10.006

Trade-off between battery size and fast charger density

How to optimize battery size & fast charger deployment?

- Drivers charge battery before empty
- Charging behavior should be understood

Focus of this study: Mid-trip fast charging

Data

- Investigator: Japan Automobile Research Institute
- Sample: 252 company cars & 247 private cars
- Survey period: 2 years (2011.2-2013.1)
- Survey area: 42 out of 47 prefectures in Japan
- Built-in data logger with GPS & communication unit: clock time, location, vehicle state (driving, normal charging, fast charging), odometer reading, use of air-conditioner & heater, state of charge

 commercial vehicles: vehicles owned by fleets, include business vehicles and government vehicles
private vehicles: vehicles owned by households

Battery	10.5&16
Capacity	kWh
Max. Driving	120&180
Mileage	km

Trip frequency per day

Average trip frequency per day: Commercial vehicles: 8.7 Private vehicles: 5.0

* Trip: travel distance between engine starting and engine stopping

Trip distance

Average trip distance: Commercial vehicles: 4.5km Private vehicles: 5.9km

* Trip: travel distance between engine starting and engine stopping

Frequency of normal charging per month

Average frequency of normal charging per month: Commercial vehicles: 16.2 Private vehicles: 13.1

Frequency of fast charging per month

Private vehicles: 2.3

Distribution of SOC at normal charge

Company cars are charged at the end of the working hours regardless of SOC 16

Distribution of SOC at fast charge

Battery capacity is not fully utilized

Stochastic frontier model of SOC at fast charging within trip

• Driver avoids running out of power

Actual remaining electricity to start charging

Subjective minimum electricity

• Inefficiency is added to minimum electricity

• Stochastic cost frontier model is applied

> Methodology

 Motivating phenomenon: An EV will be stranded without charge if there are no charging stations within the range provided by the remaining charge

The minimum required electricity to prevent being stranded

The actual remaining electricity when a fast-charging begins

✓ Data characteristics: Unbalanced panel data

• 140 vehicles, 2011.2-2013.1

✓ User characteristics: heterogeneity

- Personality: risk-adverse, adventurer
- Perception: station availability, electricity consumption

Random parameters stochastic frontier model

Random parameters stochastic frontier model

Model specification

Dependent variable	Remaining electricity			
	Number of Charging stations	TEPCO's experience (2009)		
	Familiarity with whole charging station network	Dingemans & Sperling & Kitamura (1986)		
Independent variables	Usage of Air-conditioning or heater	109Wh/km (both off), 186Wh/km (both on)		
	Battery capacity			
	Travel patterns	Kitamura & Sperling (1987)		
	Speed	Yao & Yang & Song, et al (2013)		
	Price for fast-charging	Plummer & Haining & Sheppard (1998)		
	Latter half of trial	Dingemans & Sperling & Kitamura (1986)		
	Electricity company	Stations exclusively for members		

Commercial vehicles			Private vehicles					
Variable	Working days		Non-working days		Working days		Non-working days	
	coefficient	<i>t</i> -stat	coefficient	<i>t</i> -stat	coefficient	<i>t</i> -stat	coefficient	<i>t</i> -stat
Constant (E[α])	3.687**	6.96	33.815	1.01	3.778**	27.17	3.667**	18.04
Number of charging stations 1		—	-3.954	-0.88				
Number of charging stations 2	-0.051	-0.71					-0.074**	-3.18
Number of charging stations 3					-0.001	-0.75		
Tokyo & Kanagawa	-0.151	-0.31	-30.761	-0.92	0.089	0.93	-0.036	-0.21
Osaka & Saitama	1.397**	3.01	-32.762	-0.97	-0.047	-0.33	-0.345	-1.63
Familiarity	-0.066	-0.31	-0.098	-0.09	-0.262**	-4.30	0.269**	3.26
Air-conditioning or heater	-0.037	-0.31	0.143	0.35	-0.141**	-3.37	0.039	0.46
High-capacity battery	2.153^{**}	9.97	0.623	1.59	2.147^{**}	23.83	2.390^{**}	21.47
Number of trips	0.048^{*}	2.54	0.028	0.41	-0.020^{*}	-2.35	0.011	0.81
VMT	-0.004*	-2.25	0.001	0.15	0.002^{**}	3.24	0.002^{*}	2.15
Speed (0,20]	-0.107	-0.39	0.435	0.27	0.020	0.21	0.210	1.68
Speed (40~)	-0.107	-0.46	0.434	0.36	-0.214	-1.51	0.017	0.13
Free	0.152	0.78	0.172	0.31	0.013	0.17	0.026	0.29
Paid		—	—		-0.256*	-2.55	-0.175	-1.19
Latter half	0.375^{*}	2.33	0.421	0.55	0.223**	4.53	-0.113	-1.52
Electricity	1.202^{**}	4.06						
Log likelihood function	-2357	.871	-609.	.274	-4713	.811	-2493	8.885
$\operatorname{Std}(u), \operatorname{Std}(v), \operatorname{Std}(w)$	2.083,1.1	91,1.209	1.975,1.1	21,2.787	1.633,1.0	93,1.282	1.971,0.9	55,1.257
Observations	118	37	31	7	257	75	132	25
Unbalanced panels	33	3	10)	89)	8:	5

**, * significance at 1%, 5% level

Distribution of subjective minimum and actual remaining charge

personal-use vehicles on working day

Remaining electricity (kWh)

- Subjective minimum remaining charge has peak at 3.6kWh
- 1.5kWh of average inefficiency is estimated

Distribution of subjective minimum and actual remaining charge

commercial-use vehicles on working day

Remaining electricity (kWh)

- Same peak of minimum remaining charge
- Larger (1.8kWh) average inefficiency is estimated₂₄

Battery charging at home

- Analysis on charge timing choice behavior of plug-in hybrid vehicles in Toyota City, Japan
 - This is a part of the results obtained by joint research with Toyota Motor Corporation

Smart Melit (Smart Mobility & Energy Life in Toyota City) project

- Toyota City, Japan
- 67 new houses, some with plug-in hybrid Prius
- HEMS (Home Energy Management System)
- DRP (demand response point) system

Smart house

Visualization by HEMS (home energy management system)

DRP (demand response point) portal

PHV charging monitor

DENSO

PHV charger

Example of electricity demand curve

DRP (demand response point)

- Peak pricing by point system
- Low at daytime (solar energy) & high at evening (more activity at home)

Distribution of returning home timing

No charge Charge

Many cars return home at 18 to 20 o'clock, which potentially cause peak demand

Charging time is shifted by demand response point system

Charge timing choice model

• Multinomial logit model

- 12 Prius plug-in hybrid vehicles
- 2011/10/1 to 2012/10/31
- 4615 cases

Charge timing choice model

Alternative	Variable	Coef.	
No charge	Constant	1.34	**
	Drive distance (<24 km)	-0.10	**
	Long distance dummy (>24 km)	-0.38	**
luct ofter	Price for energy conscious person	-0.044	**
Just after	Price for energy unconscious person	-0.065	**
came home	Return home at daytime (9-16)	0.70	**
	Constant	-0.69	**
Cheapest time	Price for energy conscious person	-0.016	**
	Price for energy unconscious person	0.001	
	Housewife dummy	0.66	**
	Return home at evening (17-23)	1.41	**
Other	Constant	-0.96	**
	Return home at evening (17-23)	0.65	**
	Same as the last charge dummy	2.21	**
Log-likelihood (0)			
Log-likelihood at convergence			
Adjusted rho-square			
		** 1% * 1	50/

** 1%, * 5%

Sensitivity of the estimated model

Base case: High energy conscious male driver returned home in evening after 10 km drive

Electricity price	No charge	Just after came home	Cheapest timing	Other
No DRP (20.9 JPY)	35%	47%		18%
Evening price 20.9 -> 28 JPY	36%	8%	38%	19%
+ Midnight price 20.9 -> 10 JPY	34%	7%	42%	18%

Charge timing is easier to change than the timing of air conditioner usage, etc.

Conclusions

- Battery capacity is not fully utilized, and measures to improve efficiency are needed
- Battery charging at home causes significant electricity demand, but the timing can be controlled by peak pricing