Transport modeling and simulation for next generation infrastructure development:

Connecting vehicle to electricity network

Toshiyuki Yamamoto Nagoya University

Outline

- Background
 - Next generation infrastructure and car in Japan
- Battery charging behavior
 - At home
 - Within trip
- Vehicle to grid
 - Impact on electricity demand curve
- Conclusions

Next generation infrastructure

 Council for Science and Technology Policy, Japan states the need for next generation infrastructure

- Features of next generation infrastructure
 - Smart: information technology to forecast, control and optimize infrastructure system
 - System: value added as system in addition to strength of products and technology itself
 - Global: business strategy toward global deployment

Areas of next generation infrastructure

- Smart energy community
 - Energy management system utilizing information technology
 - Renewable energy, decentralized generating plant, etc.
- Intelligent transport system
 - Communication networking among people, vehicles and road utilizing information technology
 - Navigation system, car sharing, LRT, etc.
- Next generation infrastructure in other areas
 - Water supply, goods distribution, medical care, etc.
 - Integrated system

Passenger car ownership in Japan

Source: MLIT

Passenger car sales ranking in Japan in 2012

Rank	Model (Automaker)	Sales	Engine type
1	Prius (Toyota)	317,675	HV
2	Aqua (Toyota)	266,567	HV
3	Mira (Daihatsu)	218,295	Light motor
4	N BOX (Honda)	211,156	Light motor
5	Fit (Honda)	209,276	Small / HV
6	Wagon R (Suzuki)	195,701	Light motor
7	Tanto (Daihatsu)	170,609	Light motor
8	Move (Daihatsu)	146,016	Light motor
9	Alto (Suzuki)	112,002	Light motor
10	Freed (Honda)	106,316	Small / HV

HV: hybrid vehicle

Source: Nikkei Newspaper

Electric vehicles and Plug-in hybrid vehicle in Japan

i-MiEV 2009

Leaf 2010

Prius plug-in hybrid 2012

More energy efficient, but more electricity dependent

Battery charging at home

- Analysis on charge timing choice behavior of plug-in hybrid vehicles in Toyota City, Japan
 - This is a part of the results obtained by joint research with Toyota Motor Corporation

Smart Melit (Smart Mobility & Energy Life in Toyota City) project

- Toyota City, Japan
- 67 new houses, some with plug-in hybrid Prius
- HEMS (Home Energy Management System)
- DRP (demand response point) system

Smart house

| 10.00| | 1

Visualization by HEMS (home energy management system)

DRP (demand response point) portal

PHV charger

PHV

PHV charging monitor

Example of electricity demand curve

DRP (demand response point)

- Peak pricing by point system
- Low at daytime (solar energy) & high at evening (more activity at home)

Distribution of returning home timing

Many cars return home at 18 to 20 o'clock, which potentially cause peak demand

Charging time is shifted by demand response point system

With demand response point

W/O demand response point

Charge timing choice model

Multinomial logit model

Just after Cheapest No charge Other came home timing Cheapest timing before the next setting of onvehicle use timer previously

- 12 Prius plug-in hybrid vehicles
- 2011/10/1 to 2012/10/31
- 4615 cases

Didn't change the set, or by mistake

Charge timing choice model

Alternative	Variable	Coef.	
No charge	Constant	1.34	**
	Drive distance (<24 km)	-0.10	**
	Long distance dummy (>24 km)	-0.38	**
Just after came home	Price for energy conscious person	-0.044	**
	Price for energy unconscious person	-0.065	**
	Return home at daytime (9-16)	0.70	**
Cheapest time	Constant	-0.69	**
	Price for energy conscious person	-0.016	**
	Price for energy unconscious person	0.001	
tille	Housewife dummy	0.66	**
	Return home at evening (17-23)	1.41	**
Other	Constant	-0.96	**
	Return home at evening (17-23)	0.65	**
	Same as the last charge dummy	2.21	**
Log-likelihood (0)			
Log-likelihood at convergence			
Adjusted rho-square			

Sensitivity of the estimated model

Base case: High energy conscious male driver returned home in evening after 10 km drive

Electricity price	No charge	Just after came home	Cheapest timing	Other
No DRP (20.9 JPY)	35%	47%		18%
Evening price 20.9 -> 28 JPY	36%	8%	38%	19%
+ Midnight price 20.9 -> 10 JPY	34%	7 %	42%	18%

Charge timing is easier to change than the timing of air conditioner usage, etc.

Battery charging within trip

- The timing of mid-trip electric vehicle charging
 - This is a part of the results obtained by the Project Consigning Technology Development for Rational Use of Energy (Promotion of aggregation and sharing of probe information)
 - The dataset was provided by Japan Automobile Research Institute (JARI)

Fast charger deployment in Japan

Source: CHAdeMO Association

Trade-off between battery size and fast charger density

How to optimize battery size & fast charger deployment?

- Drivers charge battery before empty
- Charging behavior should be understood

Data

- Investigator: Japan Automobile Research Institute
- Sample: 252 company cars & 247 private cars
- Survey period: 2 years (2011.2-2013.1)
- Survey area: 42 out of 47 prefectures in Japan
- Built-in data logger with GPS & communication unit: clock time, location, vehicle state (driving, normal charging, fast charging), odometer reading, use of air-conditioner & heater, state of charge

Distribution of SOC at normal charge

SOC: state of charge

Company cars are charged at the end of the working hours regardless of SOC

Distribution of SOC at fast charge

Battery capacity is not fully utilized

Stochastic frontier model of SOC at fast charging within trip

Driver avoids running out of power

Actual remaining electricity to start charging

Subjective minimum electricity

Inefficiency is added to minimum electricity

Actual remaining electricity = Subjective minimum electricity + Inefficiency

Stochastic cost frontier model is applied

Distribution of subjective minimum and actual remaining charge

- Subjective minimum remaining charge has peak at 3.6kWh
- 1.5kWh of average inefficiency is estimated

Distribution of subjective minimum and actual remaining charge

commercial-use vehicles on working day

- Same peak of minimum remaining charge
- Larger (1.8kWh) average inefficiency is estimated₂₆

Vehicle to grid

- Impact of electric vehicles on electricity demand curve in Nagoya, Japan
 - This is a part of the research results funded under the Environmental Research and Technology Development Fund by Ministry of the Environment

Micro simulation model of individual's activity-travel pattern

- Nested logit model of activity type, destination, mode and rail route choice at each time period
- Sequence of activity-travel pattern is simulated

Interaction between activity-based model & dynamic traffic assignment

Equilibrium state is calculated

 Parking location, parking duration, and SOC of each EV are simulated along time of day

Scenario analysis at Nagoya, Japan

■ Nagoya Metropolitan Area

<Population in 2020>

Over 8.0 million

<Zone>

520 zones(Nagoya City is divided into 259Average area is 1.3km²)

<Road Network>

Link:22,466

Node:7,600

10% of vehicles are assumed to be replaced by EV, which means 472,000 EVs

Distribution of electricity demand

Spatial distribution of electricity demand

- Total demand is about 31GWh
- Higher demand at midday and at CBD

Scenarios for EV charging/discharging

- Case 0: No EVs
- Case 1: Charge at home immediately after returning home
- Case 2: Charge at home during midnight
- Case 3: Charge at workplace immediately after arriving at work
- Case 4: Charge at home during midnight and discharge at workplace during daytime (until the remaining charge at 5 kWh)

Impact on electricity demand curve

• 0.1GW of daytime demand (9:00 to 16:00) can be cut by vehicle to grid at workplace

Spatial distribution of impact

 Impact is quite different between CBD and suburban area

Conclusions

- Battery charging at home causes significant electricity demand, but the timing can be controlled by peak pricing
- Battery capacity is not fully utilized, and measures to improve efficiency are needed
- Potential to cut down peak demand by vehicle to grid at workplace