Analysis on the battery size and charging of plug-in hybrid vehicles

Toshiyuki Yamamoto Nagoya University, Japan

Table of contents

• Background

- EST: environmentally sustainable transport

- Car market in Japan
 Fuel efficient cars: hybrid, plug-in hybrid, electric, etc.
- Analyses on battery of plug-in hybrid cars
 - Optimization of battery size
 - Off-peak battery charging

Transport accounts for a significant share of CO₂ emissions

Source: CO2 Emissions from Fuel Combustion, IEA, 2013

History of transport planning & EST

Psychological strategy

Mobility Management

EST scenarios

- EST 1: The high-technology scenario
- EST 2: The capacity constraint scenario
- EST 3: The optimum-combination scenario

	EST 1	EST 2	EST 3
Technology development	>>BAU	=BAU	>BAU
Transport activity	=BAU	< <bau< td=""><td>>BAU</td></bau<>	>BAU

Car market in Japan

Passenger car ownership by type in Japan

Passenger car sales ranking in Japan in 2012

Rank	Model (Automaker)	Sales	Engine type
1	Prius (Toyota)	317,675	HV
2	Aqua (Toyota)	266,567	HV
3	Mira (Daihatsu)	218,295	Light motor
4	N BOX (Honda)	211,156	Light motor
5	Fit (Honda)	209,276	Small / HV
6	Wagon R (Suzuki)	195,701	Light motor
7	Tanto (Daihatsu)	170,609	Light motor
8	Move (Daihatsu)	146,016	Light motor
9	Alto (Suzuki)	112,002	Light motor
10	Freed (Honda)	106,316	Small / HV

HV: hybrid vehicle

Source: Nikkei Newspaper

Electric vehicles and Plug-in hybrid vehicle in Japan

i-MiEVLeafPrius plug-in hybrid200920102012

More energy efficient, but more electricity dependent

Optimization of battery size

• Analysis on efficiency of plug-in hybrid vehicle using GPS survey data in Toyota City, Japan

Plug-in hybrid vehicle

• EV to HV after running out battery

Charge at home

Run as EV

Run as HV

Daily trip

Longer trip

• Effect of battery size on efficiency

Small battery

- Lighter weight
- Shorter EV range
- Less expensive

Large battery

- Heavier weight
- Longer EV range
- More expensive

Vehicle use survey at Toyota City

- April to Sept. 2011
- 157 vehicles (54 HVs)
- Trajectory by GPS & CAN logger

LED indicator

CAN: Control area network ODB: On-board diagnostics

ODBII adapter

Observed vehicle usage patterns

Travel distance by day

Travel distance by day

Distribution of dist.

Distribution of dist.

Assumptions: energy efficiency

- Larger battery causes heavier weight, then lower running efficiency
- +100kg -> EV mode: -0.55 km/kWh HV mode: -0.67 km/L

Hypothetical Spec.	PHV10	PHV20	PHV30	PHV40	PHV50
EV range (km)	10	20	30	40	50
Battery size (kWh)	1.60	3.28	5.07	6.98	9.06
EV mode (km/kWh)	9.02	8.85	8.67	8.48	8.27
HV mode (km/L)	31.94	31.74	31.52	31.29	31.04

Assumption: Cost and CO2 per km

Assumption: charging timing

Charge once in a day at the beginning of the day

Results: All vehicles changes to one type of vehicle

Reduced running cost per year

- PHV is more cost effective than HV
- Larger battery is better for running cost, but the difference is small

Results: All vehicles changes to one type of vehicle

Reduced CO2 per year

- PHV is more energy efficient than HV
- Larger battery is better for CO2 reduction, but the difference is small

Results: if car price is considered?

Vehicl	a nrica
VEIIU	

Prius (grade S)	2,320,000 JPY		
Prius PHV	3,200,000 JPY		

Difference=3,200,000 - 2,320,000

- 450,000 (subsidy by Government)

=<u>430,000 JPY</u>

Average reduced running cost by replacing Prius to Prius PHV is **18,500 JPY**

More than 20 years ownership is needed to cover initial cost!

Average difference in running cost per year between HV(30km/L) and PHV

	PHV10	PHV20	PHV30	PHV40	PHV50
Running cost (JPY / year)	-10386	-15878	-19504	-22081	-23650
CO ₂ emission (kg/year)	-110.7	-155.1	-181.9	-197.8	-204.1

Assumption: hypothetical subsidy

Government subsidy

+200,000, +250,000, +300,000 JPY (Tokyo & Aichi pref. exempt car tax for 5 years, which means about 200,000 JPY)

Car price

30,000 JPY / kWh for battery cost is assumed, and car price is adjusted according to battery size

Most cost efficient vehicle is chosen for each driver considering 10 years of ownership

Results: most cost efficient car

- Without additional subsidy, PHV is not chosen
- More subsidy replaces HV by PHV

Results: CO2 reduction

- If gasoline car is prohibited, more reduction is gained
- More subsidy contributes few more reduction

Off-peak battery charging

• Analysis on charge timing choice behavior of plug-in hybrid vehicles in Toyota City, Japan

Smart Melit (Smart Mobility & Energy Life in Toyota City) project

- 67 new houses
- HEMS (Home Energy Management System)
- DRP (demand response point) system

Smart house

Visualization by HEMS (home energy management system)

PHV charging

DRP (demand response point) portal

PHV charging

PHV charger

DRP (demand response point)

- Peak pricing by point system
- Low at daytime (solar energy) & high at evening (more activity at home)

Example of electricity demand pattern

Charge timing choice behavior

• Multinomial logit model

- 12 Prius plug-in hybrid vehicles
- 2011/10/1 to 2012/10/31
- 4615 cases

Descriptive analysis

Distribution of returning home timing

Time of day

Charge timing choice by returning home timing

With DRP

Charge timing choice by returning home timing

Resulting charge timing distribution

Without DRP

With DRP

Charge timing choice model

Alternative	Variable	Coef.	
No charge	Constant	1.34	**
	Drive distance (<24 km)	-0.10	**
	Long distance dummy (>24 km)	-0.38	**
luct ofter	DRP price for high ecological minded person	-0.044	**
Just alter	DRP price for low ecological minded person	-0.065	**
came nome	Return home at daytime (9-16)	0.70	**
	Constant	-0.69	**
Channat	DRP price for high ecological minded person	-0.016	**
time	DRP price for low ecological minded person	0.001	
time	Housewife dummy	0.66	**
	Return home at evening (17-23)	1.41	**
	Constant	-0.96	**
Other	Return home at evening (17-23)	0.65	**
	Same as the last charge dummy	2.21	**
Log-likelihood	(0)	-5774	
Log-likelihood at convergence		-4415	
Adjusted rho-square			
		** 10/ * 1	-07

** 1%, * 5%

Sensitivity of the estimated model

Base case:

Higher ecological minded male driver returned home in evening after 5 km drive

	No charge	Just after came home	Cheapest timing	Other
No DRP (20.9 JPY)	67%	12%		21%
Evening price 20.9 -> 28 JPY	48%	6%	31%	15%
Midnight price 20.9 -> 10 JPY	46%	6%	34%	14%
Distance 5km -> 20km	16%	9%	53%	22%

Conclusions

 More energy efficient vehicles, but more electricity dependent

 Larger battery does not necessarily means more energy efficient

Peak spreading for battery charge can be brought by pricing