Analysis on the battery size and charging of plug-in hybrid vehicles

Toshiyuki Yamamoto
Nagoya University, Japan
Table of contents

• Background
 – EST: environmentally sustainable transport

• Car market in Japan
 – Fuel efficient cars: hybrid, plug-in hybrid, electric, etc.

• Analyses on battery of plug-in hybrid cars
 – Optimization of battery size
 – Off-peak battery charging
Transport accounts for a significant share of CO$_2$ emissions

World CO2 emissions by sector in 2010

- Residential: 6%
- Other: 10%
- Industry: 20%
- Transport: 22%
- Electricity and heat: 42%

CO2 emissions from transport in 2009 and 2010

- Road: 5.5 Gt CO$_2$
- Other transport: 0.5 Gt CO$_2$

History of transport planning & EST

EST: environmentally sustainable transport

Structural strategy
- Demand adjust
 - TDM
- Capacity increase
 - Construction

Psychological strategy
- Mobility Management

Vehicle improvement
- Low emission
- Alternative fuel
EST scenarios

- EST 1: The high-technology scenario
- EST 2: The capacity constraint scenario
- EST 3: The optimum-combination scenario

<table>
<thead>
<tr>
<th></th>
<th>EST 1</th>
<th>EST 2</th>
<th>EST 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology development</td>
<td>>>BAU</td>
<td>=BAU</td>
<td>>BAU</td>
</tr>
<tr>
<td>Transport activity</td>
<td>=BAU</td>
<td><<BAU</td>
<td>>BAU</td>
</tr>
</tbody>
</table>

Source: OECD, 1998
Car market in Japan

Passenger car ownership by type in Japan

- Light motor passenger car
- Small passenger car
- Ordinary passenger car

Source: MLIT
Passenger car sales ranking in Japan in 2012

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model (Automaker)</th>
<th>Sales</th>
<th>Engine type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prius (Toyota)</td>
<td>317,675</td>
<td>HV</td>
</tr>
<tr>
<td>2</td>
<td>Aqua (Toyota)</td>
<td>266,567</td>
<td>HV</td>
</tr>
<tr>
<td>3</td>
<td>Mira (Daihatsu)</td>
<td>218,295</td>
<td>Light motor</td>
</tr>
<tr>
<td>4</td>
<td>N BOX (Honda)</td>
<td>211,156</td>
<td>Light motor</td>
</tr>
<tr>
<td>5</td>
<td>Fit (Honda)</td>
<td>209,276</td>
<td>Small / HV</td>
</tr>
<tr>
<td>6</td>
<td>Wagon R (Suzuki)</td>
<td>195,701</td>
<td>Light motor</td>
</tr>
<tr>
<td>7</td>
<td>Tanto (Daihatsu)</td>
<td>170,609</td>
<td>Light motor</td>
</tr>
<tr>
<td>8</td>
<td>Move (Daihatsu)</td>
<td>146,016</td>
<td>Light motor</td>
</tr>
<tr>
<td>9</td>
<td>Alto (Suzuki)</td>
<td>112,002</td>
<td>Light motor</td>
</tr>
<tr>
<td>10</td>
<td>Freed (Honda)</td>
<td>106,316</td>
<td>Small / HV</td>
</tr>
</tbody>
</table>

HV: hybrid vehicle

Source: Nikkei Newspaper
Electric vehicles and Plug-in hybrid vehicle in Japan

i-MiEV 2009
Leaf 2010
Prius plug-in hybrid 2012

More energy efficient, but more electricity dependent
Optimization of battery size

• Analysis on efficiency of plug-in hybrid vehicle using GPS survey data in Toyota City, Japan
Plug-in hybrid vehicle

• EV to HV after running out battery

Charge at home Run as EV Run as HV

Daily trip Longer trip

• Effect of battery size on efficiency

Small battery
• Lighter weight
• Shorter EV range
• Less expensive

Large battery
• Heavier weight
• Longer EV range
• More expensive
Vehicle use survey at Toyota City

- April to Sept. 2011
- 157 vehicles (54 HVs)
- Trajectory by GPS & CAN logger

CAN: Control area network
ODB: On-board diagnostics

[Images of OBDII adapter and LED indicator]
Observed vehicle usage patterns

Travel distance by day

Vehicle A

Distribution of dist.

Vehicle A

Travel distance by day

Vehicle B

Distribution of dist.

Vehicle B
Assumptions: energy efficiency

- Larger battery causes heavier weight, then lower running efficiency
- +100kg -> EV mode: -0.55 km/kWh
 HV mode: -0.67 km/L

<table>
<thead>
<tr>
<th>Hypothetical Spec.</th>
<th>PHV10</th>
<th>PHV20</th>
<th>PHV30</th>
<th>PHV40</th>
<th>PHV50</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV range (km)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Battery size (kWh)</td>
<td>1.60</td>
<td>3.28</td>
<td>5.07</td>
<td>6.98</td>
<td>9.06</td>
</tr>
<tr>
<td>EV mode (km/kWh)</td>
<td>9.02</td>
<td>8.85</td>
<td>8.67</td>
<td>8.48</td>
<td>8.27</td>
</tr>
<tr>
<td>HV mode (km/L)</td>
<td>31.94</td>
<td>31.74</td>
<td>31.52</td>
<td>31.29</td>
<td>31.04</td>
</tr>
</tbody>
</table>
Assumption: Cost and CO2 per km

<table>
<thead>
<tr>
<th>Mode</th>
<th>Gasoline (JPY/L)</th>
<th>Electric (JPY/kWh)</th>
<th>CO2 emission (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>138</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>Electric</td>
<td></td>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td>Daytime</td>
<td>17.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nighttime</td>
<td>9.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV (15km/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV (30km/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHV10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHV20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHV30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHV40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHV50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nighttime charge: Daytime charge: HV mode or CV
Assumption: charging timing

Charge once in a day at the beginning of the day

Case 1: One day travel distance < EV range

Run as EV

Cost = electricity price (JPY/km) × distance

Case 2: One day travel distance > EV range

Run as EV Run as HV

Cost = electricity price (JPY/km) × EV range
 + gasoline price (JPY/km) × (distance – EV range)
Results: All vehicles changes to one type of vehicle

Reduced running cost per year

- PHV is more cost effective than HV
- Larger battery is better for running cost, but the difference is small
Results: All vehicles changes to one type of vehicle

Reduced CO2 per year

• PHV is more energy efficient than HV
• Larger battery is better for CO2 reduction, but the difference is small
Results: if car price is considered?

<table>
<thead>
<tr>
<th>Vehicle price</th>
<th>Prius (grade S)</th>
<th>2,320,000 JPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prius PHV</td>
<td>3,200,000 JPY</td>
<td></td>
</tr>
</tbody>
</table>

Difference = $3,200,000 - 2,320,000 - 450,000 (subsidy by Government)

= **430,000 JPY**

Average reduced running cost by replacing Prius to Prius PHV is **18,500 JPY**

More than 20 years ownership is needed to cover initial cost!

Average difference in running cost per year between HV (30km/L) and PHV

<table>
<thead>
<tr>
<th></th>
<th>PHV10</th>
<th>PHV20</th>
<th>PHV30</th>
<th>PHV40</th>
<th>PHV50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running cost (JPY / year)</td>
<td>-10386</td>
<td>-15878</td>
<td>-19504</td>
<td>-22081</td>
<td>-23650</td>
</tr>
<tr>
<td>CO₂ emission (kg/year)</td>
<td>-110.7</td>
<td>-155.1</td>
<td>-181.9</td>
<td>-197.8</td>
<td>-204.1</td>
</tr>
</tbody>
</table>
Assumption: hypothetical subsidy

Government subsidy

+200,000, +250,000, +300,000 JPY
(Tokyo & Aichi pref. exempt car tax for 5 years, which means about 200,000 JPY)

Car price

30,000 JPY / kWh for battery cost is assumed, and car price is adjusted according to battery size

Most cost efficient vehicle is chosen for each driver considering 10 years of ownership
Results: most cost efficient car

- Without additional subsidy, PHV is not chosen
- More subsidy replaces HV by PHV
Results: CO2 reduction

- If gasoline car is prohibited, more reduction is gained
- More subsidy contributes few more reduction
Off-peak battery charging

• Analysis on charge timing choice behavior of plug-in hybrid vehicles in Toyota City, Japan
Smart Melit (Smart Mobility & Energy Life in Toyota City) project

- 67 new houses
- HEMS (Home Energy Management System)
- DRP (demand response point) system
Smart house

Visualization by HEMS (home energy management system)

DRP (demand response point) portal

PHV charger

PHV charging

PHV charging
DRP (demand response point)

- Peak pricing by point system
- Low at daytime (solar energy) & high at evening (more activity at home)
Example of electricity demand pattern

Scheduled to fill-up at 4:00
Charge timing choice behavior

- Multinomial logit model

- 12 Prius plug-in hybrid vehicles
- 2011/10/1 to 2012/10/31
- 4615 cases
Descriptive analysis

Distribution of returning home timing

Time of day

Charge timing choice by returning home timing

Without DRP

With DRP
Charge timing choice by returning home timing

Without DRP
- Other
- Just after came home

With DRP
- Other
- Cheapest timing
- Just after came home

Resulting charge timing distribution

Without DRP

With DRP
Charge timing choice model

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Variable</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No charge</td>
<td>Constant</td>
<td>1.34**</td>
</tr>
<tr>
<td></td>
<td>Drive distance (<24 km)</td>
<td>-0.10**</td>
</tr>
<tr>
<td></td>
<td>Long distance dummy (>24 km)</td>
<td>-0.38**</td>
</tr>
<tr>
<td>Just after came home</td>
<td>DRP price for high ecological minded person</td>
<td>-0.044**</td>
</tr>
<tr>
<td></td>
<td>DRP price for low ecological minded person</td>
<td>-0.065**</td>
</tr>
<tr>
<td></td>
<td>Return home at daytime (9-16)</td>
<td>0.70**</td>
</tr>
<tr>
<td>Cheapest time</td>
<td>Constant</td>
<td>-0.69**</td>
</tr>
<tr>
<td></td>
<td>DRP price for high ecological minded person</td>
<td>-0.016**</td>
</tr>
<tr>
<td></td>
<td>DRP price for low ecological minded person</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Housewife dummy</td>
<td>0.66**</td>
</tr>
<tr>
<td></td>
<td>Return home at evening (17-23)</td>
<td>1.41**</td>
</tr>
<tr>
<td>Other</td>
<td>Constant</td>
<td>-0.96**</td>
</tr>
<tr>
<td></td>
<td>Return home at evening (17-23)</td>
<td>0.65**</td>
</tr>
<tr>
<td></td>
<td>Same as the last charge dummy</td>
<td>2.21**</td>
</tr>
<tr>
<td>Log-likelihood (0)</td>
<td></td>
<td>-5774</td>
</tr>
<tr>
<td>Log-likelihood at convergence</td>
<td></td>
<td>-4415</td>
</tr>
<tr>
<td>Adjusted rho-square</td>
<td></td>
<td>0.233</td>
</tr>
</tbody>
</table>

** 1%, * 5%
Sensitivity of the estimated model

Base case:
Higher ecological minded male driver returned home in evening after 5 km drive

<table>
<thead>
<tr>
<th></th>
<th>No charge</th>
<th>Just after came home</th>
<th>Cheapest timing</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DRP (20.9 JPY)</td>
<td>67%</td>
<td>12%</td>
<td></td>
<td>21%</td>
</tr>
<tr>
<td>Evening price 20.9 -> 28 JPY</td>
<td>48%</td>
<td>6%</td>
<td>31%</td>
<td>15%</td>
</tr>
<tr>
<td>Midnight price 20.9 -> 10 JPY</td>
<td>46%</td>
<td>6%</td>
<td>34%</td>
<td>14%</td>
</tr>
<tr>
<td>Distance 5km -> 20km</td>
<td>16%</td>
<td>9%</td>
<td>53%</td>
<td>22%</td>
</tr>
</tbody>
</table>
Conclusions

• More energy efficient vehicles, but more electricity dependent

• Larger battery does not necessarily means more energy efficient

• Peak spreading for battery charge can be brought by pricing