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Abstract— A two-stage route recommendation system is 

developed.  The system consists of the minimum cost path search 
stage and the route choice stage. Several routes are selected 
according to multiple additive cost functions in the former stage, 
and a recommendation route is chosen from among the selected 
routes according to another function capable of nonlinear 
manipulations in the latter stage. These functions are developed 
as neural networks. The effectiveness of the system is examined 
using an experimental data set. 
 

Index Terms— geographical information systems, navigation, 
neural networks, route choice. 
 

I. INTRODUCTION 
N-VEHICLE route guidance systems are one of the most 
prevalent consumer goods that belong to the class of 

intelligent transportation systems (ITS). In Japan, the 
cumulative shipments since 1992 of in-vehicle navigation 
system units reached 9,390,000 units as of the end of May 2002 
[1]. Recommending a route to take is the primary function of 
the in-vehicle navigation system, and the appropriateness of 
the recommended route is one of the key factors that determine 
whether the driver follows the recommended route. In many 
metropolitan areas of Japan, road networks are dense, and 
numerous alternative routes are in general available for any 
given combinations of the origin and the destination. It is often 
impossible for the driver to compare every available route and 
determine the optimal route among them within a reasonable 
amount of time. A route-guidance system is valuable in the 
sense it aids the driver in making route choice a practicable 
decision. The driver, however, may not necessarily be satisfied 
with the route recommended by the route guidance system; 
preferences of routes are most likely different among drivers, 
and could vary from time to time even for the same driver. 
Commercially available route guidance systems, on the other 
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hand, select routes to recommend based on very simplistic 
rules. In order to offer route guidance that is of value to the user, 
the route guidance system must learn its user’s preferences and 
continuously refine its knowledge of user preferences. 

One approach to address this issue is to develop a route 
choice model that contains driver-specific parameters which 
represent his/her preferences in route choice, then update the 
parameters with data that contain cumulative information on 
many choices made by the same driver. Discrete choice models 
such as logit models have been applied to represent 
individuals’ travel behavior for some time. The parameters of 
such models are usually estimated after collecting information 
from all sample cases. Such estimation procedures are called 
“batch learning” from the viewpoint of learning. Batch 
learning is not suitable for in-vehicle guidance systems because 
the capacity to store data and the computational speed available 
to estimate a model with the data are both limited; rather, 
on-line learning, where model parameters are updated 
recursively as data are obtained, is more suitable. It is possible 
to treat the driver’s choices repeated over time very efficiently 
in on-line learning. 

We develop a learning model of route choice behavior using 
neural networks, which is one of the typical on-line leaning 
models. Neural networks have been applied in many 
transportation research fields [2], [3]. Prior researches applying 
neural networks to the analysis of route choice behavior (e. g. 
[4]) observed their high ability of representing drivers’ route 
choice. Adding to their ability of on-line learning, neural 
networks also allow us to represent non-linear relationships 
between variables easily, a task that requires considerably 
more effort with discrete choice models. For example, the 
perceived disutility of a trip may increase proportionally with 
travel distance up to a certain point, beyond which the marginal 
increase in disutility with respect to travel distance may start 
declining. 

Many graph search algorithms have been developed and 
applied to find the minimum cost path in the road network (e. g. 
[5]–[7]). Recently, faster algorithms using the hierarchical 
nature in real road network is applied for in-vehicle route 
guidance systems to find the optimal route (e. g. [8]–[10]). In 
these algorithms, however, a certain cost is pre-assigned to 
each link according to a certain additive cost function and the 
attributes of the link, and the minimum cost path is sought 
according to the total cost summed over the links on the path. 
Because of the algorithm, the cost function is unable to include 
non-additive attributes of the route such as the rate of deviation 
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from the geometrically shortest route. The additivity 
assumption is convenient for solving shortest path problem, 
and especially for traffic assignment problem, but 
unfortunately there are many situations in which the additivity 
assumption is inappropriate. Gabriel and Bernstein [11] 
suggested that these situations include nonlinear valuation of 
travel time, non-additive tolls and fares, and emission fees. 

Artificial neural networks automatically identify such 
non-linear relationships and calibrate the parameters to 
represent them. Calibrated parameters, however, cannot be 
used to find the minimum cost path generally because of the 
non-additivity. A two-stage route recommendation system, 
therefore, is developed in this study. The system consists of the 
minimum cost path search level and route choice level.  The 
former level selects several routes according to multiple 
additive cost functions, and the latter level determines a 
recommendation route among the selected routes according to 
the function capable of accounting for non-additive attributes. 

Functions in both stages are formulated as neural networks. 
Prior researches suggested that several factors influence the 
preferences of the route [12]. The factors are, however, not 
fully known to us yet. Thus the combination of neural networks 
with GIS (Geographical Information System) based digital 
maps which are used for in-vehicle navigation system, has a 
potential to provide a better representation of the preference of 
the route than other methods such as logit models. Neural 
networks are capable of automatically and quickly identifying 
the contributing factors among the huge number of variables 
stored in the digital map. The parameters of the neural 
networks are estimated using an experimental data set in this 
study. Future extensions of the study are also described.  

 

II. A TWO-STAGE ROUTE RECOMMENDATION SYSTEM 
The proposed two-stage route recommendation system is 

shown in Fig. 1. At first, the user inputs the destination of the 
trip to the recommendation system, while the origin of the trip 
is inputted automatically as the current location of the vehicle. 

At stage 1, N alternative routes for the inputted 
origin-destination pair are searched from the road network on 
the digital map using N additive cost functions, respectively. In 
stage 1, the neural networks themselves are not used to select 
alternative routes. Rather, the framework of neural networks is 
used for learning the preference of the user. 

N two-layer feed-forward neural networks with one input 
layer, one output layer and no hidden layer are used in stage 1. 
Two-layer feed-forward neural networks with a sigmoid 
function become identical to binary logit models, when the 
differences between two routes in explanatory variable values 
are inputted to the nodes in the input layer. The cost functions 
correspond to the observable components of the utility 
functions in binary logit models, which are represented by the 
weighted summations of the inputs in the neural networks. 
Thus, the additivity of the cost function is maintained whilst 
the learning in the two-layer feed-forward neural networks, 
which represent N additive cost functions, is performed as 

updating of the weights that apply to the respective variables in 
the cost functions. N least cost routes are selected from the road 
network based on the N additive cost functions. Note that the 
same routes may sometimes be selected even when N different 
cost functions are adopted. The identical routes are used as 
different alternatives in stage 2 in this case, and the 
computational process in stage 2 remains unchanged. 

In stage 2, the best route is chosen, from among the N 
alternative routes, according to a neural network. The best 
route is given to the user as the recommended route. A 3-layer 
feed-forward neural network with sigmoid functions is used at 
stage 2, which is capable of representing the non-additivity of 
the preference of routes. 

A neural network with N × K input nodes is a 
straightforward implementation at stage 2 if K explanatory 
variables of each route and N alternative routes are used in the 
recommendation system. However the number of input nodes 
tends to become large, causing the typical problem known as 
“over-fitting”; a model fits the data better as the number of 
nodes increases, but it does not necessarily predict well for 
cases which are not in the teaching data. Indeed, we examined 
this type of neural networks with 8 explanatory variables and 5 
alternative routes, and obtained the results that the neural 
network perfectly replicated all 39 cases in the training data, 
but predicted correctly only in 5 cases out of 10 test cases. The 
results imply that the over-fitting occurred with 40 (= 8 × 5) 
input nodes. 

Thus a neural network with 2 × K input nodes is used in this 
study for comparing two alternative routes in order to keep the 
number of input nodes small. 2 × K input nodes are for the 
sums and differences of the attributes of paired routes, i.e., (Xik 
+ Xjk) and (Xik – Xjk), where Xik is the kth attribute of route i. The 
best route is chosen from the round robin competition, in which 
two alternatives are compared with each other at a time, for all 
the pairs, the better route get one point in each comparison, and 
the route with the most points is chosen as the best route. 

The user drives to the destination while taking the 
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Fig. 1.  Structure of a two-stage route recommendation system. Dashed arrows 
represent the feedback loop from the driver that neural networks use for 
on-line learning. 
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recommended route into consideration. If the user is satisfied 
with the recommended route, he/she would drive through the 
recommended route. Otherwise, the user would drive through a 
route other than the recommended route. In the latter case, the 
parameters of the cost functions in stage 1 and the neural 
network in stage 2 are adjusted to reflect that fact that the user 
preferred the driven route to the recommendation route. 

The adjustments are performed by the learning mechanism 
of neural networks. Specifically, a back propagation algorithm 
[13] is used in this study. To update the cost functions in stage 
1, the differences in the attribute values between the 
recommendation route and the driven route are inputted, and 
the weights are adjusted to calculate the weighted sum of the 
inputs such that the driven route will be outputted as the better 
route. The updated function is used as the new cost function in 
the minimum path search algorithm. Even if the cost functions 
are set to have completely different values from one another 
initially, the learning may result in the identical functions 
producing only one alternative route outputted in stage 1. One 
approach to avoid this inefficiency may be to let only one 
function be updated by learning, and let the other functions be 
set to be fixed as the values initially set. Alternatively, a 
mutation process like ones used in genetic algorithms may be 
included to keep the functions different from each other. 

To update the parameters in stage 2, the attributes of the 
route driven by the user and the route recommended by the 
system are inputted similarly as in stage 1, but the sums and 
differences of the attributes between the two routes are used in 
stage 2. The neural network in stage 2 is also adjusted to output 
the driven route as the better route. 

III. SAMPLE CALIBRATION 

A. Data Set 
The data set used in this study contains the attributes of 5 

routes which are selected for each origin-destination pair on the 
basis of 5 criteria: minimize travel distance, maximize 
expressway (tolled) use, maximize arterial road use, maximize 
road width, and minimize turns. The data set represents 5 
alternative routes for each of 49 origin-destination pairs 
selected for the study. The origin-destination pairs are chosen 
from Kinki region in Japan, and local governmental offices or 
train stations are used as the origins and destinations. The 
origin-to-destination distance ranges from 10 to 400 kilometers. 
These pairs were selected through discussions with engineers 
of the Sumitomo Electric Industries Ltd. (SEI) who were in 
charge of developing in-vehicle route guidance systems and 
who knew the traffic conditions along the 5 alternative routes 
for each origin-destination pair. The attributes of each route are 
represented by: total distance, distance of expressways, 
distance of wide roads (wider than 13 m), distance of narrow 
roads (narrower than 5.5 m), the number of turns, the number 
of traffic lights, the number of segments (a sequence of 
roadways that belong to one type of road width (wide 
road/narrow road/other) is defined as one segment), and the 
amount of tolls on expressways. The values of most of these 
variables were determined for each route based on the 

geographical information system (GIS) database implemented 
in the SEI’s in-vehicle route guidance systems. Five alternative 
routes for each of the 49 origin-destination pairs are ranked 
according to their appropriateness by the SEI’s engineers. 
These rankings are used in the study to indicate the preference 
of the user for the sample calibrations. 

B. First Stage 
Here, the learning ability of the two-layer feed-forward 

neural networks with a sigmoid function are examined, so only 
one neural network is used for the experiment. A total of 245 
pairs of alternative routes are used to train the 2-layer 
feed-forward neural network to output the higher ranked route 
as the better route. The input variables are normalized to have 
values between 0.0 and 1.0 as is normally done in neural 
network analysis. The learning rate is set as 0.1. The results are 
given in Table I. 

All the weights of the trained neural network have the 
theoretically expected signs. The results suggest that 
expressways are preferred and that narrow roads tend to be 
avoided. The results also suggest that traffic lights and turns are 
negatively valued almost equally. 

A binary logit model with the same explanatory variables as 
the neural network is estimated by maximum likelihood 
estimation to compare the estimated coefficients with the 
weights trained by the neural network. The results are also 
given in Table I. 

Some of the variables have similar values between the 
weight of the neural network and the coefficient of the binary 
logit model. The statistical tests on the differences of the values 
between them are difficult because the standard errors of the 
weights in the trained neural network are not given in general. 
Bootstrap methods [14] may be a possibility to obtain standard 
errors of the weights in neural networks, but it remains as a 
further task. Here, the standard errors of the weights are 
assumed to be the same as those of the binary logit model in 
order to grasp rough inferences on the differences between 
them. Then, assuming no correlations of the values between the 
weight of the neural network and the coefficient of the binary 
logit model, the t-statistics, ti’s, are calculated to examine the 
differences of the two statistically by  

 

TABLE I 
CALIBRATED NEURAL NETWORK AND LOGIT MODEL FOR STAGE 1 

 Neural Network Logit Model 
Variable Weight Coef. s.e. 

Total distance -12.02 -13.61** 2.97 
Expressway distance 62.15 45.39** 10.73 
Wide road distance 2.74 1.19 1.75 
Narrow road distance -24.68 -8.82** 3.14 
Number of turns -3.54 -3.66** 1.19 
Number of traffic lights -2.35 -2.14 1.73 
Number of road segments -26.38 -21.02** 6.41 
Fee of expressway -4.39 -2.49* 1.05 
Sample size 245  245
L(0)   -169.8
L(β)   -109.5
Hit ratio 29/49  29/49

**: p < 0.01, *: p < 0.05 
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where wi is the weight of the ith variable in the neural network, 
and βi and σi are the coefficient and the standard error of the ith 
variable in the binary logit model, respectively. The calculated 
t-statistics suggest that all the variables except narrow road 
distance have statistically indifferent values between the neural 
network and the binary logit model. 

The hit ratio, which is defined as the fraction, in the total 
origin-destination pairs, of those origin-destination pairs where 
the highest ranked route has the highest value of the trained 
cost function, is calculated for the neural network and the 
binary logit model. Both models have the same hit ratio as 
29/49, indicating that the two models have similar ability of 
replicating the ranking of alternative routes. 

C. Second Stage 
The same 245 pairs of alternative routes as used in stage 1 

are used to train the 3-layer feed-forward neural network. The 
learning rate of the neural network in stage 2 is also set as 0.1. 
Alternative neural networks with 16 input nodes are developed 
in this study by setting the number of the nodes in the hidden 
layer as 1, 2, 4, 8, and 16. 

Table II summarizes the results of network training. The hit 
ratio for training cases is defined as before, with the total of 
245 cases from the full 49 origin-destination pairs. On the other 
hand, the hit ratio for leave-one-out cases is defined with cases 
for the 48 origin-destination pairs, excluding from the full pairs 
the pair for which the prediction is made. The latter requires 
developing 49 neural networks to test each origin-destination 
pair. This indicator is said to show the predictability of the 
model more appropriately than the hit ratio for training cases. 

As shown in Table II, the hit ratio for training cases 
increases with the number of nodes in the hidden layer. The 
neural network with 16 nodes in the hidden layer perfectly 
replicates all 49 cases. However, the neural network with a 
larger number of nodes in the hidden layer tends to become 
“over-fit” to the data, too. The hit ratio for leave-one-out cases 
doesn’t increase so clearly with the number of nodes in the 
hidden layer. The results imply the “over-fitting” occurs in the 
neural networks examined in this study. 

In order to examine the “over-fitting”, neural networks with 
8 input nodes are also developed. The input variables are the 
sum of total distance, the difference of total distance, the 

difference of distance of expressways, and the difference of the 
number of turns. The results of network training are shown in 
Table III. The results suggest that the neural networks with 8 
input nodes have lower hit ratios for training cases, but keep 
similar hit ratios for leave-one-out cases. These indicate that 
the neural networks with 8 input nodes have a comparable 
predictability with those with 16 input nodes. 
 

IV. CONCLUSION 
A two-stage route recommendation system is proposed, and 

the sample calibration is presented in this study. The proposed 
system is capable of learning the user’s preference of routes 
through neural network training. The system is capable of 
representing the non-additivity in the preference, while 
conventional minimum cost path search algorithms which are 
limited to the linear cost functions can be used. 

The results of model calibration show a high predictability 
of the neural networks, but imply that the neural networks 
examined in this study have a typical problem of “over-fitting”. 
Thorough examinations to find the best structure of neural 
networks in terms of the number of nodes in the input and 
hidden layers and the learning rate remain as a further task. 
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