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ABSTRACT 
Probe-car data include the information about the trajectory of speeds driver have experienced 
while passing through arbitrary selected sections. This paper discusses the methods of 
en-route updating travel time prediction, making effective use of probe-car data. Several 
methods suggested in this paper, which are en-route updating methods using both 
accumulated probe-car data and driver-experienced data, can predict travel time more 
accurately than methods that do not use both data in most cases.  
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INTRODUCTION 
Travel time is critically important information for drivers in both pre-trip and en-route. That is, 
travel time influences decisions about departure time, route choice and route switching. Travel 
times, however, can vary significantly depending on traffic conditions, so travel time 
prediction is an important subject of research. Thanks to recent developments in IT 
(information technology), a variety of observation equipments (automated vehicle 
identification (AVI) systems, loop detectors, probe-car systems, etc.), are available for 
gathering traffic data. Currently, AVI systems and loop detectors are used to predict travel 
times. These equipments require considerable costs for its implementation, however, and 
provide data only for those sections of road in which it is installed. In the probe car system, 
vehicles travel through the traffic network gathering a wide range of data from the entire 
network. Currently, the probe car system gathers less data than conventional systems, but it is 
much cheaper and covers a broader area. 
 
Most existing researches into travel time predictions, for example, using Regression models 
(1-3), Pattern-matching algorithms (4-7) and Kalman filtering theory (8-9), use data —real 
time or accumulated— that is obtained from specific sections of road. Travel times for the 
same sections are then predicted for the near future (a subsequent short period of time). 
Therefore, only drivers that are about to enter that particular section can receive predicted 
travel times. The length of the predictive section is expected to be longer, however, since 
drivers cannot accurately calculate the time needed to travel the long sections. If the section is 
long, traffic conditions may change while traveling through the section. Therefore, drivers 
would benefit from receiving updated travel time predictions while en-route. In other words, 
travel time information for long sections should be provided not only to drivers that are about 
to enter the section but also to drivers that have entered it. Previous studies used Kalman 
filtering theory to handle dynamically changing conditions of the section, but that method 
uses only the aggregate traffic data gathered from stationary equipment, which does not 
include the trajectories of speeds that drivers have experienced. The probe car system 
provides information about the trajectories of speeds that drivers have experienced while 
traveling through the section. In other words, probe car data include not only the time needed 
to travel through the entire section but also how it is composed of the times needed to travel 
shorter segments of the section. We think that en-route predictions of travel times can be 
updated using accumulated probe car data. When the travel time would be updated, the 
accuracy of the predictions can be improved by using the relationship between accumulated 
data and the trajectory of the speeds (travel times in shorter segments of the sections) that a 
driver has just experienced. 
 
This paper describes methods for updating travel time predictions using accumulated probe 
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car data and empirically compares the predictive accuracy of several updating methods. The 
following section discusses en-route updating of travel time predictions. The third section 
describes the data used in this paper, the area of study, and compares the predictive accuracy 
of the suggested methods. The final section discusses future directions. 
 

METHODS OF UPDATING TRAVEL TIME PREDICTIONS 
In this section, we discuss various methods of updating travel time predictions while en-route 
using accumulated probe car data. The term ‘en-route updating’ includes revisions of the 
initial travel time prediction while moving towards the destination. Updating is done using the 
relationship between the trajectory of the speeds that a driver has just experienced and the 
trajectories of speeds in data accumulated during past trips (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Concept of Updating Travel Times 
 
Assuming there are N accumulated data for a particular section of road, the predicted travel 
time for a driver who is about to enter the section can be expressed by 
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where T̂ is the predicted travel time and nT~ is the travel time of nth accumulated data. If the 
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After a driver has passed from the first sub-section to the end of the kth sub-section, the 
following four methods can be used to predict the travel time from the k+1th sub-section to 
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the end of the Kth sub-section. 
 
A. Method using mean squared error  
Let { }kvv ,,1  be speeds that a driver has experienced while passing through sub-sections 
{ }k,,1 , and { }n

k
n vv ~,,~

1  as speeds of the nth accumulated probe-car data. Then the 
difference between the experienced data and accumulated data can be written as 
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Then predicted travel time is expressed by equation (4) using the N ′  (≤  N) accumulated 
data with the minimum erroneous value Errn. 
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where ++1k̂T is the predicted travel time to pass from the k+1th sub-section to the Kth 
sub-section. n

N ′δ  is 1 if nth data is in the N ′  minimum erroneous data and 0 in all other 
cases. In the empirical analysis, N ′  is set to 30. 
 
B. Method using weight function  
Let ( )21, xxf w  be the weight function that calculates the similarity between 1x  and 2x . The 
value calculated by ( )wf  is assumed positive. The similarity in the traveling conditions in the 
sub-sections can be described as  
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The predicted travel time is then expressed by equation (6) using the N ′′  (≤N) accumulated 
data with the maximum similarity value nW . 
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where n
N ′′δ  is 1 if nth data is in N ′′  maximum similarity data and 0 in all other cases. In the 

empirical analysis, N ′′ is set to 30 and the weight function given by equation (7) is used.  

( ) ( )n
ii

n
iiw vvvvf ~exp~, −−= γ  (7) 

where we set 0.1=γ .  
 
C. Method using bivariate statistical inference  
When the target section is divided into two groups of sub-sections that are expressed by 
{ }k,,1  and { }Kk ,,1+ , the travel times for the two groups are expressed by n

kT−
~  and n

kT ++1
~ . 

When the travel times for the two groups are distributed following the normal distribution, 
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( n
kT−

~ , n
kT ++1

~ ) is distributed according to bivariate normal distribution. When a driver has passed 
the first group { }k,,1  in a time of kT− , the predicted travel time is calculated as  
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where kT − , 1+kT  are the mean travel times of groups { }k,,1  and { }Kk ,,1+  as calculated 
from the accumulated data, ++− 1,

~
kkρ  is the correlation between n

kT−
~  and n

kT ++1
~ , and 

k−σ~ , ++1
~

kσ are the standard deviations for each group. 
 
D. Method using multidimensional statistical inference  
This method considers the travel times of each sub-section as probability variables using 
K-dimensional normal distribution. Every time the probe-car passes a sub-section, the travel 
time prediction is updated. In this case, the joint probability density function is expressed by 
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where ( )Kxxx ,,, 21=x  is the probability variable following K-dimensional normal 
distribution, ( )Kµµµ ,,, 21=µ  is the mean vector and V  is the KK ×  
variance-covariance matrix. In our context, the conditional mean vector ( )Ktx tt ˆ,,2̂11

==µ  
under the condition of 11 tx =  is expressed by  
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where 1−U  is the ( ) ( )11 −×− KK  variance-covariance matrix under the condition of 11 tx =  
and w is the element of matrix 1−V . Additional information can be found in the appendix. 
 
Two travel-time prediction methods are also used as base cases for comparing the four 
suggested methods.  
 
E. Method using only accumulated data 
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F. Method using only driver-experienced data 
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Method E does not use driver-experienced data, while method F, which is the one used in 
conventional car-navigation systems, does not use accumulated data. 
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EMPIRICAL ANALYSIS OF UPDATING TRAVEL TIMES 

DATA SET 
The probe car data used in this study was collected as part of the Nagoya Probe Taxi Project 
(2002.1 - 3, 2002.10 – 2003.3) established by the Internet ITS Consortium (10). This project 
was set up to develop information technology system infrastructure. In the Nagoya pilot 
program, Internet ITS infrastructure was established in Nagoya City and experiments using 
more than 1,500 taxis were conducted in cooperation with 32 member companies of the 
Nagoya Taxi Association. The objectives of the project include technical verification of the 
Internet ITS infrastructure, the effectiveness and potential business application of the 
information collected from the vehicles, the effectiveness and economics of the Internet ITS 
infrastructure in the taxi business, and the business opportunities in information content 
delivery business for taxi passengers.  
 
PROBE CAR DATA 
The probe car data used in this study were collected and transmitted to the operation center 
whenever one of several pre-defined events occurred. Table 1 describes these events and the 
frequency of their occurrence. The “Distance,” “Short stop” and “Short trip” events 
comprised about 30-35% of the total events.  
 

Event Definition Percent 
Distance Vehicle travels 300 m without an event 31.3% 
Short start Vehicle starts 35.1% 
Short stop Vehicle stops 29.8% 
Passenger boarding/departing 
Time 
Engine start/stop 
Hazardous movements 

Passenger enters or exits the vehicle 
550 seconds pass without an event 
Engine starts or stops 
Vehicle exceeds speed limit or accelerates 
or decelerates too quickly 

3.8% 

Table 1. Events that trigger transmission of information to the operation center 
 
Since taxis are used as probe cars, each in-service taxi trip, that is, from the time a passenger 
enters the taxi to the time the passenger exits the taxi, can be treated as a trip. This study used 
only in-service taxi data. Since taxis are more time-sensitive while carrying passengers, this 
data is more appropriate for analyzing travel time predictions. 
 
AREA OF STUDY 
Figure 2 shows the area of study and the target routes for which travel times are predicted. 
These are the most often used routes for taxis traveling from Nagoya Airport to Nagoya 
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Station. One route is an expressway, and 
the other is an arterial road. The former is 
about 12.0 km and latter about 7.0 km in 
length. Figure 3 shows the number of trips 
through each route and the average 
weekday travel time by time of day. This 
figure shows that between 19:00 and 23:00, 
the number of trips on the expressway 
route is high and the average travel time is 
relatively constant. This is also true for the 
arterial road route between 18:00 and 
22:00. Therefore, the data for these hours 
was used for the following analysis. Figure 
4 shows the relationship between the travel 
distance and the travel time for a section of 
each route. This figure shows that for the 
trajectory of speeds for the arterial road 
route, there is a strong correlation between 
the first half of the trip and the latter half. 
In other words, if the first half of the trip 
takes considerable time, so will the latter 
half of the trip. The same figure also shows 
a moderate correlation for the expressway 
route. 

Nagoya 
Airport 

Kusunoki 
Intersection Kusunoki JCT 

Target Route 1 
Expressway 
Route 

Nagoya
Station

Target Route 2
Arterial Road

Route

Nishikibashi
Off-Ramp 

Figure 2. Study Area 
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Expressway Section                     Arterial Road Section 
Figure 4. Relationship between travel distance and travel time 

 
COMPARISON OF PREDICTIVE ACCURACY 
In this section, we compare the accuracy of the predictions provided by the six methods 
(methods A through F) described above. To compare the accuracy of these methods, we use a 
prediction error index, the mean absolute relative error (MARE). This is expressed by  
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where N is the number of samples, subscript “k” of MAREk is the travel distance (prediction 
point), MAREk is the prediction error at the end point of the kth sub-section. The expressway 
and arterial road section samples are 451 and 131 trips, respectively.  
 
The expressway route has twelve sub-sections each of which is 1 km in length, while the 
arterial road route has thirteen sub-sections, each of which is 0.5 km in length. To simulate a 
travel time prediction, we first classified all cases as either driver-experienced data or 
accumulated data. In this study, one case was considered experienced data and all other cases 
were considered accumulated data; the simulation was repeated as many times as there were 
cases.  
 
Table 2 and Table 3 show the values of MAREk for the expressway section and the arterial 
road section, respectively. For the expressway section, method A provided the most precise 
predictions of travel time at all prediction points, while method B provided the most precise 
predictions at most points for the arterial road section. In most cases, the travel times 
predicted by the four methods using both driver-experienced data and accumulated data (A, B 
C and D) were more precise than those predicted by methods E and F. In the expressway 
section, MARE1 is significantly lower than MARE0 (at the origin). Therefore, we can say that 
the high accuracy of the predictions derives from the appropriate use of driver-experienced 
data. The accuracy of the predictions for the arterial road section is lower than that for the 
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expressway section; the shorter the remaining sub-sections, the lower the accuracy. This can 
be attributed to the high degree of variability in the speeds of vehicles traveling the arterial 
road section. The accuracy of the methods that use statistical inferences (C and D) is lower 
than that of the non-statistical methods (A and B). One explanation for this is the low 
correlation between one sub-section and the next sub-section. Another, more reasonable, 
explanation is that the statistical methods use accumulated data that are aggregated. Therefore, 
if adequate data have not been collected, extemporary conditions (i.e. traffic accidents and 
traffic jams) cannot be accommodated. The accumulated data used in this study consist of 
only a few hundred cases, so there are only a few cases with extemporary conditions. On the 
other hand, non-statistical methods use only N ′  or N ′′  accumulated data that are not 
aggregated and include appropriate data for making predictions. With data such as these, 
non-statistical methods provide more accurate travel time updates.  
 
 Travel Distance k (prediction distance: 12.0km-travel distance) 

Method Origin 1km 3km 5km 7km 9km 11km 

A 0.0731 0.0412 0.0347 0.0342 0.0378 0.0406 0.0530 

B 0.0731 0.0419 0.0367 0.0343 0.0391 0.0436 0.0544 

C 0.0731 0.0426 0.0406 0.0397 0.0398 0.0450 0.0560 

D 0.0731 0.1200 0.0616 0.0563 0.0548 0.0423 0.1012 

E 0.0731 0.0729 0.0706 0.0662 0.0650 0.0696 0.0732 

F 0.0731 0.1164 0.0631 0.0515 0.0548 0.0533 0.0619 

Table 2. MAREk of each prediction method (Expressway Section) 
 
 Travel Distance k (prediction distance: 7.0km-travel distance) 

Method Origin 1km 2km 3km 4km 5km 6km 

A 0.0710 0.0713 0.0776 0.0934 0.1252 0.1887 0.2192 

B 0.0710 0.0685 0.0769 0.0923 0.1273 0.1926 0.2187 

C 0.0710 0.0747 0.0790 0.0938 0.1270 0.1948 0.2210 

D 0.0710 0.0729 0.0856 0.1008 0.1273 0.2100 0.2706 

E 0.0710 0.0743 0.0787 0.0931 0.1273 0.1932 0.2193 

F 0.0710 0.2192 0.2556 0.2328 0.1677 0.2463 0.3697 

Table 3. MAREk of each prediction method (Arterial Road Section) 
 

CONCLUSION AND TOPICS FOR FUTURE STUDY 
Probe-car data provide not only travel times for specific sections but also the trajectory of 
speeds that a driver experienced while traveling those sections. In this study, we analyzed 
several methods for updating predicted travel times using both accumulated probe car data 



10 

and the trajectory of speeds that a driver has experienced. The results suggest that using both 
accumulated and driver-experienced data provides a more precise prediction in most cases. 
The squared error and weight function methods are more precise than other methods. In 
reality, the travel times for long sections should be updated and provided to those drivers that 
have entered these sections more than once. Topics for future study include an analysis of the 
relationship between the lengths of the sub-sections and the accuracy of the predictions. The 
amount of accumulated data used in this study is insufficient for precisely predicting and 
updating travel times. Therefore, we will seek other methods that can be used to predict travel 
times when the accumulated data are insufficient. Finally, the time lag between the 
transmission of data from the probe-car and the provision of the prediction is an important 
issue that must be investigated in the near future. 
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APPENDIX 
Supposing ( )Kxxx ,,, 21=x  is the probability variable following K-dimensional normal 
distribution, then ( )Kµµµ ,,, 21=µ  is the mean vector of x , and V  is the KK ×  

variance-covariance matrix that is expressed by  
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If the number of samples of ix  is N, then iµ  and ijv  are expressed by  
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Then the joint probability density function is expressed by 
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where subscript “T” means transposed matrix. The distributed form of the probability density function 
expressed by Equation (a.5) depends on the quadratic form expressed by following equation. 

( ) ( )TµxVµx −− −1  (a.6) 

For simplicity, we set 1−= VW . Under the condition of 11 tx = , equation (a.6) becomes equation (a.7).  

( ) ( ) ( ) ( ) ( ) ( )1111111
1

11
1,1

2 µµµµµµ −−+−−+−− ∑∑
≠≠≠

twtxwtxwx jjj
jji

jjijii  (a.7) 



12 

The third term is negligible because it is constant.  
Here, matrix U  is separated from W  and expressed by the following equation. 
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The other variables x′ , µ′  and b  are  
( )Kxx ,,2=′x  (a.9) 
( )Kµµ ,,2=′µ  (a.10) 

and 

( )( )Kwwwt 1131211 ,,,µ−=b  (a.11) 

Using the above equation (a.8)-(a.11), we can transform equation (a.7) into (a.12).  

( ) ( ) ( )TT µxbµxUµx ′−′+′−′′−′ 2  (a.12) 

Completing the square form of equation (a.11) produces the following equation. 

( ) ( ) ( )TT 1111 −−−− −+′−′+′−′ UbUUbUbµxUUbµx  (a.13) 

Therefore conditional expectation µ  can be obtained from the following equation.  

( ) ( )( ) 1
112112

1 ,,,, −− −−=−′= UUbµµ KK wwt µµµ  (a.14) 

and conditional variance V  is obtained from the following equation. 
1−= UV  (a.15) 

 


